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Abstract. The average ground state energy and entropy for ±J spin glasses on Bethe lattices of connec-
tivities k + 1 = 3 . . . , 26 at T = 0 are approximated numerically. To obtain sufficient accuracy for large
system sizes (up to n = 212), the Extremal Optimization heuristic is employed which provides high-quality
results not only for the ground state energies per spin ek+1 but also for their entropies sk+1. The results
indicate sizable differences between lattices of even and odd connectivities. The extrapolated ground state
energies compare very well with recent one-step replica symmetry breaking calculations. These energies
can be scaled for all even connectivities k + 1 to within a fraction of a percent onto a simple functional
form, ek+1 = ESK

√
k + 1−(2ESK +

√
2)/

√
k + 1, where ESK = −0.7633 is the ground state energy for the

broken replica symmetry in the Sherrington-Kirkpatrick model. But this form is in conflict with perturba-
tive calculations at large k+1, which do not distinguish between even and odd connectivities. We also find
non-zero entropies per spin sk+1 at small connectivities. While sk+1 seems to vanish asymptotically with
1/(k + 1) for even connectivities, it is numerically indistinguishable from zero already for odd k + 1 ≥ 9.

PACS. 75.10.Nr Spin-glass and other random models – 02.60.Pn Numerical optimization –
89.75.-k Complex systems 05.10.-a Computational methods in statistical physics and nonlinear dynamics

1 Introduction

In this paper we study the ground state (T = 0) prop-
erties of ±J spin glasses on k + 1-Bethe lattices [1]. The
Bethe lattices in this case are r-regular graphs [2] with
r = k + 1. These are randomly connected graphs consist-
ing of n vertices in which each vertex has a fixed connec-
tivity of k + 1. This constraint contrasts with “random
graphs” [2,3] in which pairs of vertices are randomly con-
nected, leading to a Poissonian distribution of connectiv-
ities around a mean of 〈c〉; these graphs will be studied
numerically elsewhere [4]. We explore the large-n regime
of low-connectivity graphs, k+1 = 3, . . . , 26, which are of
great theoretical interest as finite-connected, mean-field
models for low-dimensional lattice spin glasses [5,6]. A
great number of studies have focused on various aspects
of this conceptually simple model to hone the complex
mathematical techniques required to treat disordered sys-
tems [1,7–12] or optimization problems [14–19]. In this pa-
per we will try to provide a independent numerical check
on the validity and accuracy of those techniques.

Our results, in turn, reflect on the flexibility of the ex-
tremal optimization (EO) heuristic [20,21] in finding ap-
proximate but high-quality solutions for ground states of
spin glasses on an arbitrary graphical structure in a rea-
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sonable computational time. These are often NP-hard op-
timization problems which are believed to require a com-
putational effort that rises faster than any power of n to
obtain provably exact solutions [22]. Thus, exact methods
as of yet are not able to provide results for large-n prob-
lems, at least not with significant statistics [23], except
for some special cases [24–26]. Furthermore, there is only a
small number of capable approximate algorithms available
for the study of T = 0 properties of spin glasses [27–29],
mostly restricted to d-dimensional lattice models, and EO
provides a distinct alternative which will increase the con-
fidence in the numerical results available. In previous pa-
pers, we have demonstrated the capabilities of EO in de-
termining near-optimal solutions by reproducing existing
results for 3d and 4d spin glasses and obtaining new results
for the coloring problem [21,30] and the graph partitioning
problem [20,31,32]. The results in this paper show that
EO is not only capable of approximating ground states
well but also of sweeping the entire configuration space ef-
ficiently to determine the degeneracy of ground states [30].
Unlike other methods, EO never “freezes” into local min-
ima and proves to be limited mostly by the inability to
store new ground states.

We find that our results for the ground state energies
are consistent with the theoretical results of the assump-
tion of replica symmetry-breaking (RSB) in the ±J spin
glass on k + 1-connected Bethe lattices. Our numerical
result for k + 1 = 3 below clearly excludes the replica
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symmetric (RS) solution and are within 0.1% of the one-
step replica symmetry-broken (1RSB) result [1]. While
1RSB is by far not a full RSB solution, the numerical
result corroborates the expectation that higher order cor-
rections would be small. Beyond that our results suggest
subtle differences between even and odd values of the con-
nectivity k+1, with no obvious way to continue smoothly
between them [33]. These oscillations may doom pertur-
bative calculation for k + 1 → ∞ [8,11]. We find that the
entropy is finite and decaying like 1/(k+1) for large, even
k + 1. For odd k + 1 it is non-zero only for small values
and may be vanishing already beyond some finite, odd
connectivity.

In the following we introduce first the Bethe lattices we
used in the numerical calculations. In Section 3 we briefly
describe the EO algorithm which is amply discussed else-
where [20,21,34]. In Section 4 we present a few simula-
tions to reproduce known results to gauge our procedure.
In Section 5 we present our numerical results, including
an extensive discussion in Section 5.3. Some conclusions
are presented in Section 6.

2 Spin glasses on Bethe lattices

Disordered spin systems on random graphs have been
investigated as mean-field models for low-dimensional
spin glasses or optimization problems, since variables are
long-range connected yet have a small number of neigh-
bors. Particularly simple are Bethe lattices of connectivity
k+1 [1,7,9], also called fixed-valence or r-regular random
graphs [2,19,31,35]. These are graphs consisting of n ver-
tices where each vertex possesses a fixed number k + 1 of
bonds with randomly selected other vertices. In compari-
son to the otherwise more familiar random graphs studied
by Erdös and Rény [2,3], Bethe lattices at a given n and
k avoid fluctuations in the connectivities of vertices and
in the total number of bonds.

There are slight variations in the generation of Bethe
lattices. For instance, to add a bond one could choose at
random two vertices of connectivities < k + 1 to link un-
til all vertices are k + 1-connected. Instead, we have used
the method described in reference [2] to generate these
graphs. Here, all the terminals on the vertices form a list
of n(k+1) independent variables. For each added bond two
available terminals are chosen at random to be linked and
removed from the list. Furthermore, for algorithmic con-
venience, we reject graphs which possess self loops, bonds
that connect two terminals of the same vertex. Multiple
bonds between any pair of vertices are allowed, otherwise
it is too hard to generate feasible graphs for, say, n = 32
and k + 1 = 20. Since k + 1 remains finite for n → ∞,
the energy and entropy per spin would only be effected to
O(1/n) by the differences between these choices.

Once a graphical instance is generated, we assign ran-
domly chosen but fixed couplings Ji,j ∈ {−1, +1} to ex-
isting bonds between neighboring vertices i and j. Each
vertex i is occupied by a spin variable xi ∈ {−1, +1}. The
energy of the system is defined as the difference in number

between violated bonds and satisfied bonds,

H = −
∑

{bonds}
Ji,jxixj , (1)

and in this paper we will focus on the energy per spin,

ek+1(n) =
1
n
〈H〉, (2)

as a function of k + 1 in the limit of n → ∞. Averages
are taken over all randomly generated instances of graphs
and of bond assignments. Each instance can have a large
degeneracy Ω in the configurations exhibiting its ground
state energy, and we also sample their average entropy per
spin,

sk+1(n) =
1
n
〈ln Ω〉· (3)

3 τ -EO algorithm for Bethe lattices

The extremal optimization algorithm, τ -EO, which we em-
ploy in this paper, has been discussed previously in [21],
and in [32,35] with regard to the setting of its one free pa-
rameter, τ . Here, we merely describe the implementation
of τ -EO without further justification.

To obtain the numerical results in Sections 4–5, we
used the following implementation of τ -EO: For a given
spin configuration on a graph, assign to each spin xi a
“fitness”

λi = −#violated bonds = 0,−1,−2, . . . ,−(k + 1), (4)

so that

ek+1 = − 1
n

∑
i

λi − k + 1
2

(5)

is satisfied. Each spin falls into one of only k + 2 possible
states. Say, currently there are nk+1 spins with the worst
fitness, λ = −(k +1), nk with λ = −k, and so on up to n0

spins with the best fitness λ = 0. Now draw a “rank” l
according to the distribution

P (l) =
τ − 1

1 − n1−τ
l−τ (1 ≤ l ≤ n). (6)

Then, determine 0 ≤ j ≤ (k + 1) such that
∑k+1

i=j+1 ni <

l ≤ ∑k+1
i=j ni. Finally, select any one of the nj spins in

state j and reverse its orientation unconditionally. As a
result, it and its neighboring spins change their fitness.
After all the effected λ’s and n’s are reevaluated, a new
spin is chosen for an update.

This EO implementation updates spins with a
(τ -dependent) bias against poorly adapted spins on behalf
of equation (6). This process is “extremal” in the sense
that it focuses on atypical variables, and it forms the ba-
sis of the EO method. The only adjustable parameter in
this algorithm is the power-law exponent τ . For τ = 0,
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randomly selected spins get forced to update, resulting
in a random walk through the configuration space which
would yield poor results. For τ → ∞, only spins in the
worst state get updated which quickly traps the update
process to a small region of the configuration space which
may be far from a near-optimal solution. The arguments
given in [35] and a few experiments indicate that τ = 1.3
is a good choice to find ground states efficiently on Bethe
lattices.

The algorithm never converges or “freezes” into a par-
ticular state but perpetually explores new near-optimal
configurations. It is, of course, easy to simply store the
lowest energy state found so far in a given run of τ -EO
and terminate when desired. Previous experience with
optimizing spin glasses with EO [21], and a few experi-
ments, suggest a typical number of updates of O(n3) for
an EO-run to obtain saturation in the values found for
ground states, at least up to the system sizes n ≈ 103 ob-
tainable here. Instead of pushing to attain larger values
of n, we opt here for obtaining better statistics by sam-
pling more instances at smaller values of n while spending
even more time on each instance than may seem to be
required, in an attempt to ensure accuracy. In particu-
lar, our implementation restarts for each instance at least
rmax = 4 times with new random initial spin-assignments,
executing ≈ 0.1 n3 updates per run. If a new, lower-than-
previous energy state is encountered in run r, we adjust
rmax = 2 + 2r for that instance so that EO runs at least
twice as many restarts as were necessary to find the lowest
state in the first place. Especially for small n, rmax hardly
ever exceeds 4; for larger n a few graphs require up to
25 restarts before termination.

Since EO perpetually explores new configurations it
is well suited to explore also the degeneracy of low-energy
states. In this case we not only store the first configuration
found with the lowest energy for that instance. Instead,
we consider each configuration with the lowest energy, re-
taining new ones and rejecting all others. This procedure
is somewhat inefficient and at best allows system sizes up
to n = 256 beyond which the degeneracy exceeds memory
constraints. But it provides a fast way to also determine
the T = 0 entropy of the ground states with moderate
accuracy. In these runs, we used a similar approach to the
above, except for setting rmax = 8 + 2r where r is the
latest run in which another new configuration of the low-
est energy was located. Here, for some highly degenerate
instances at larger n, rmax could reach up into the 100’s,
further limiting attainable system sizes.

4 Numerical test

To evaluate the proposed τ -EO algorithm, we have run
a series of test. First, we can defer to some already pub-
lished results [21,35]. In reference [21] we have calculate
approximations to the ground state energy for ±J spin
glasses on a hyper-cubic lattice for d = 3 and d = 4 for
systems up to n = 123 = 1728 which for each n reproduced
previous results obtained with sophisticated genetic algo-
rithms [27,28] (although there we used a fixed rmax). To

evaluate the ability of the algorithm to determine the de-
generacy of low-energy states found, we have reproduced
within statistical error the results of reference [36] up to
n = 63 beyond which EO ran out of time and memory to
sample states completely. (Ref. [36] used a more efficient
way to estimate the entropy from sampling only a small
number of states.) And it took EO only a fraction of a
second to find all 60 ground states of a 43 instance that
had been exactly enumerated in reference [23].

To gauge τ -EO’s performance for larger n, we have
run our implementation also on two 3d lattice instances,
toruspm3-8-50 and toruspm3-15-50, with n = 83 = 512
and n = 153 = 3375, considered in the 7th DIMACS
challenge for semi-definite problems [37]. Bounds [38] on
the ground-state cost established for the larger instance
are Hlower = −6138.02 (from semi-definite programming)
and Hupper = −5831 (from branch-and-cut). EO found
HEO = −6049 (or H/n = −1.7923), a significant im-
provement on the upper bound and already lower than
limn→∞ H/n ≈ 1.786 . . . found in references [21,27,28].
Furthermore, we collected 105 such states, which roughly
segregate into 3 clusters with a mutual Hamming distance
of at least 100 distinct spins; at best a small sample of the
≈ 1073 ground states expected [36]! For the smaller in-
stance the bounds given are −922 and −912, resp., while
EO finds −916 (or H/n = −1.7891) and was terminated
after finding 105 such states. While this run (including
sampling degenerate states) took only a few minutes of
CPU (at 800 MHz), the results for the larger instance re-
quired about 16 hours.

Finally, we note that we have considered the algorithm
for making Bethe lattices previously in references [31,35].
In reference [31] we have studied the graph bi-partitioning
problem and found that the ground state energy was well
above previous RS calculations from reference [9], but only
minutely below numerical calculations obtained using sim-
ulated annealing [19]. In reference [35] we have considered
some variations in the generation of Bethe lattices and
found that they effect the results only in next-to-leading
order.

5 Numerical results for Bethe lattices

We have simulated Bethe lattices with the algorithm de-
scribed in Section 3 for k + 1 between 3 and 26, and
graph sizes n = 2l for l = 5, 6, . . . , 12 to obtain results
for ground state energies, and for n ∈ [16 . . .256] to deter-
mine their entropy. In the following, we present the results
for ground-state energies and entropies from those simu-
lations. The results are discussed in detail in Section 5.3.

5.1 Ground state energies

To reach relative statistical errors of our averages roughly
uniform with n we generated initially a number of 105/

√
n

instances for each n and k + 1. Fortunately, deviations
appear to narrow much faster than 1/

√
n, and thus we
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Table 1. Data from the EO simulations for the average ground-state energy per spin ek+1(n), plotted also in Figures 1 and 2.

n −e3(n) −e4(n) −e5(n) −e6(n) −e7(n) −e8(n) −e9(n) −e10(n) −e15(n) −e20(n) −e25(n)

32 1.195(1) 1.3506(6) 1.5543(6) 1.6734(8) 1.8424(8) 1.9425(9) 2.0906(9) 2.1730(33) 2.7013(40) 3.1056(48) 3.4923(51)

64 1.2231(3) 1.3964(4) 1.5979(4) 1.7294(5) 1.8972(5) 2.0083(6) 2.1551(6) 2.2557(23) 2.7884(28) 3.2090(33) 3.6029(37)

128 1.2426(5) 1.4245(10) 1.6269(10) 1.7652(12) 1.9335(13) 2.0476(14) 2.1945(15) 2.3042(16) 2.8443(20) 3.2742(23) 3.6731(25)

256 1.2542(3) 1.4417(6) 1.6434(7) 1.7885(8) 1.9549(8) 2.0782(10) 2.2204(10) 2.3324(11) 2.8774(14) 3.3186(16) 3.7215(18)

512 1.2608(2) 1.4534(4) 1.6548(5) 1.8020(5) 1.9685(6) 2.0934(6) 2.2379(7) 2.3488(7) 2.8993(10) 3.3435(11) 3.7505(12)

1024 1.2644(1) 1.4603(3) 1.6612(3) 1.8110(3) 1.9762(5) 2.1035(5) 2.2470(5) 2.3605(5) 2.9092(7) 3.3551(9) 3.7612(11)

2048 1.2673(1)

4096 1.2689(2)

∞ 1.2716(1) 1.472(1) 1.673(1) 1.826(1) 1.990(3) 2.121(1) 2.2645(5) 2.378(3) 2.935(1) 3.389(1) 3.806(4)

Table 2. Some properties of the numerical computations.
Listed are for each n the number of instance used and the
average number of updates for each instance needed to obtain
the results listed in Table 1.

n Instances t

32 19444 3.0 × 102

64 13750 1.5 × 103

128 883 1.0 × 104

256 625 1.6 × 105

512 441 3.1 × 106

1024 312 7.6 × 107

2048 220 1.5 × 108

4096 25 2.4 × 109

added more instances at smaller n with small extra com-
putational cost to obtain narrow error bars there as well.
In Table 1 we list the values of average energies according
to equation (2), ek+1(n), for each k+1 and n. The number
of instances used and the average number of update steps
required are listed in Table 2. The results for the number
of updates has been also averaged over all connectivities
k + 1, although lower-connected graphs require typically
fewer updates. Note that this is the minimal number of
updates needed to obtain the listed results, the actual
number of updates taken up by each run of EO to ensure
convergence was at least twice of that but could be much
larger, according to the specification of the algorithm in
Section 3.

Unfortunately, when plotted as a function of 1/n, the
average energies for each given k + 1 clearly do not ex-
trapolate linearly (as, for example, seems to be the case
for spin glasses on a hyper-cubic lattice [21,27,28]). In-
stead, using an extrapolation according to 1

ek+1(n) ∼ ek+1 +
A

nν
(n → ∞). (7)

1 In a previous simulation [35], we have attempted to fit a
smaller set of data (at k = 1 = 3, 4) with a ln(n)/n correction
with a result that was somewhat above the current extrapola-
tion value.
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1/n
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-1.26

-1.25

e 3

EO
fit
1RSB
RS

k+1=3

Fig. 1. Extrapolation plot for the EO data for k + 1 = 3
given in Table 1 and the fitted curve according to equation (7).
For n → ∞ the extrapolation gives e3 = −1.2716(1), way
above the RS result but consistent with the 1RSB result from
reference [1], both indicated by horizontal lines.

We find that for the whole range of connectivities k + 1
studied here, the scaling corrections appeared to be con-
sistent with ν = 2/3 within a few percent, except for two
outliers at k + 1 = 10 and 25. Thus, we have plotted for
each k +1 the values of ek+1(n) as a function of 1/n2/3 in
Figures 1 and 2. Although the extrapolation appears to be
linear on that scale for each k +1, we have fitted the data
with the more general form of equation (7). (Fits were
weighted according to n and to the inverse of the stan-
dard deviation for each point.) These fits are also shown
as dashed lines in each of the Figures 1 and 2.

The extrapolation results for the ground state energies
appear to be quite stable under variation of the scaling
form, for instance, when fitting with fixed ν = 2/3 instead
of equation (7). We estimate that each has a relative error
of about < 0.3%. Exceptions to this estimate we have to
grant for the cases of k + 1 = 10 and 25, in which case
we also observe significant differences to the ν = 2/3 cor-
rections to scaling. Throughout, the extrapolated energies
are consistent with recently given lower bounds [39].

We can compare our results with existing theoretical
predictions at the RS and the 1RSB level at least for
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Fig. 2. Extrapolation plot for the EO data in Table 1 for k + 1 = 4 to 25, as in Figure 1. All data seems to extrapolate well
linearly in 1/n2/3. The extrapolated values of ek+1 for n → ∞ are also listed in Table 1.
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the case of k + 1 = 3. For this case, a recently pub-
lished calculation [1] yielded e3 = −1.2777 at the RS,
and e3 = −1.2717 at the 1RSB level. These values are
also indicated in Figure 1. Clearly, our result for k + 1 is
consistent with the 1RSB results, but certainly inconsis-
tent with the RS result. The numerical result corroborates
the claim from reference [1] that corrections from the full
RSB solution would be small. Further 1RSB results for
other values k + 1 are currently being calculated [40]. We
will present a more detailed analysis of the extrapolated
values of ek+1 at n → ∞ in Section 5.3.

5.2 Ground state entropy

We have also used EO to sample the degeneracy Ω of the
lowest-energy states found. Due to the discrete nature of
the energy of the system, ground-states can be highly de-
generate, and the ground-state entropy per spin defined in
equation (3) may well be non-vanishing for n → ∞. While
the search for a ground state of an instance is certain
to provide a rigorous upper bound to the actual ground
state energy, the search for the complete set of ground
states for an instance entails the risk of two competing sys-
tematic errors: (1) If EO misses to find the exact ground
state, one is likely to vastly over-count the degeneracy,
since Ω is expected to rise exponentially with the energy
above the ground state [41]. (2) Even if EO finds ground
states, it may simply undercount Ω, since such states
could be too far separated in configuration space. There-
fore, we have implemented EO with the settings described
in Section 3, which emphasize the desire for accuracy over
computational efficiency. Accordingly, we were bound to
conduct a separate set of simulations from those that de-
termined the energies only. In these simulations we focused
on smaller system sizes of n ≤ 256 for k+1 = 3, . . . , 9 and
10, 14, . . . , 26 only. The limit on n for the smaller k + 1
is mostly dictated by avoiding system sizes at which Ω
typically exceeds 106.

As a test for the accuracy of our implementation, we
have run the simulation for k + 1 = 3 twice on the ex-
actly identical instances, using different initial conditions
and n/5 more updates in the second run: The results, both
for the energies and Ω, were identical for each instance,
producing the same set of configurations independent of
the starting point of the search. We therefore assume that
systematic errors in our data are small and can be ne-
glected.

Since the range of system sizes n is smaller than for the
case of the energies, it is more difficult to extrapolate our
data for sk+1(n). Again, it is clear that the corrections are
not linear in 1/n, but instead seems to be scaling close to
1/n2/3 for all k +1, as for the energies above. Considering
the limitations on n, we assume that the corrections are
exactly of that form and extrapolate our data simply with
a fit to

sk+1(n) ∼ sk+1 +
A

n2/3
(n → ∞), (8)

again, weighting each data point with respect to n and
the inverse of its error. As the systematic and statistical

uncertainties of our data appears to be small, the uncer-
tainty about the scaling corrections must be considered
the most significant limitation on accuracy in our extrap-
olation. The data and the extrapolation fits according to
equation (8) are shown in Figures 3 and 4. The results
for sk+1 for n → ∞ are listed in Table 3.

The data clearly shows a different quantitative behav-
ior between odd and even values of k + 1. This difference
for the entropies can be explained in terms of the “free
spins:” In a highly frustrated system, even near ground
states, many spins are stuck in a situation in which they
violate many of their constraints, no matter how they are
oriented, and changing from one direction to the other
may hardly change the energy of the system. In particu-
lar, an even-connected spin that happens to violate exactly
half of its bonds (with J = ±1) can flip freely without any
change to the energy. Odd-connected spins can only be-
come “free” in a connected pair (that happens to violate
exactly half of its external bonds but satisfies their mutual
bond) in which both simultaneously flip without chang-
ing the energy. The latter situation is naturally far less
likely, and thus, purely even-connected graphs exhibit far
more potential for degeneracy at the ground state than
the corresponding odd-connected graphs. Some prelimi-
nary studies for k+1 = 3 and 4 show that in ground state
configurations the fraction of free spins (zero by design
for k + 1 = 3) converges to a value just around 5% for
k + 1 = 4, while the fraction of free pairs seems to vanish
for large n for both, even and odd k + 1. We have not ex-
plored the clustering of these states [36]. We will explore
the different behaviors for even and odd k + 1 in the next
section.

5.3 Discussion of the extrapolation results

In this section, we want to focus on some of the curious
properties exhibited by the values of the energies and en-
tropies found by extrapolation in the previous section. We
have already noted the difference between the entropies for
even and odd values of k+1. Such behavior for these Bethe
lattices has been observed previously [39]. In fact, there
are similar differences, although more subtle, for the ener-
gies ek+1. These differences become most apparent when
we plot the data asymptotically for large k + 1, where it
is known that

lim
k+1→∞

ek+1√
k + 1

= ESK , (9)

with ESK = 0.7633 being the RSB ground state energy of
the Sherrington-Kirkpatrick model [6,42]. In Figure 5 we
have plotted ek+1/

√
k + 1 as a function of 1/(k + 1). On

this scale, we notice that the energies split into a set of
even and a set of odd values 2, each located apparently on
a straight line. Even though k+1 ≤ 25 is quite small, each
line separately extrapolates very close to the exact value
for large k+1 indeed: Eeven

SK ≈ −0.763 and Eodd
SK ≈ −0.765.

2 Curiously, the oscillations in the energy bounds observed
by reference [39] are exactly out of phase with this data.
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Fig. 3. Extrapolation plot for the EO data for the entropy sk+1(n) for k + 1 = 3 to 15. All data seems to extrapolate well
linearly in 1/n2/3. Note the difference in the results between odd (left) and even (right) k + 1. The extrapolated values of sk+1

for n → ∞ are listed in Table 3.
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Fig. 4. Extrapolation plot for the EO data for the entropy
sk+1(n) for some larger, even k + 1, similar to Figure 3.

Even more amazing, the value of e2 = −1 (see Eq. (16)
below) for the trivial k+1 = 2 Bethe lattice is very close to
the linear fit for the even EO results. Clearly, a function
that would interpolate continuously all the data will have
to be very complicated (oscillatory). But could it be that
its envelope on the even and the odd integers happens to
be simple? Then, in case of the even data 3, we could even
write down the exact form of the function for Ek+1 that
would fit the data, since it has to pass e2 = −1 and satisfy
equation (9), to wit:

Ek+1 =
√

k + 1ESK − 2ESK +
√

2√
k + 1

· (10)

To test equation (10), we plot the data in Figure 6
as ek+1/Ek+1 to study its deviations from the conjecture.

3 Although the odd data may equally well be fitted in this
way, the line can not be determined since only one point on it,
ESK, is exactly known.

Table 3. Extrapolation results for the entropies per spin for
the data plotted in Figures 3 and 4.

k + 1 sk+1 k + 1 sk+1

3 0.0102(10) 4 0.0381(15)

5 0.0048(10) 6 0.0291(10)

7 0.0020(10) 8 0.0218(10)

9 0.0002(15) 10 0.0198(10)

15 0.0002(15) 14 0.0126(10)

18 0.0095(10)

22 0.0076(10)

26 0.0063(15)
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Fig. 5. Plot of the rescaled extrapolated energies,
ek+1/

√
k + 1, as a function of 1/(k + 1). The data appears

to fall on two separate straight lines for even and for odd k+1.
The straight line provides an excellent fit all the way from the
exact result e2 = −1 (diamond) to ESK = −0.7633 (horizontal
line) at k + 1 → ∞.
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1
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1/ε
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Fig. 6. Plot of the energies relative to the conjectured function
Ek+1 in equation (10) as a function of 1/(k + 1). All data for
even k + 1 falls within about 0.1% of Ek+1 (i.e. the horizontal
line). The point at k + 1 = 2 (diamond) is exact by definition,
of course.
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Fig. 7. Plot of the relative error ε in % between the extrap-
olated data and the function in equation (10), as before in
Figure 6, but now superimposed with the corresponding re-
sult obtained for the exactly solvable RS spin glass on ran-
dom graphs [43]. Note the order-of-magnitude larger deviations
from the reference line for the RS example.

While the extrapolated values do not fall exactly within
their (estimated) error bars on the proposed form, they
are indeed within about 0.1% of it. To judge how close the
data is to the proposed functional form in equation (10),
we utilize a closely related example. The ground-state en-
ergy as a function of the (continuous) average connec-
tivity 〈c〉 is known exactly for the RS case of ordinary
random graphs with fluctuating internal connectivities,
equation (16) in reference [43]. If one plots that solution
(which involves exponentials and modified Bessel func-
tions) in the same way as ek+1 in Figure 5, one notes
that it, too, could be approximated surprisingly well with
a straight line, −√

2c/π + (
√

2/π − 1
2 )/

√
c, now cross-

ing the RS ground state energy −√
2/π [6] for 〈c〉 → ∞

and reaching the trivial result of −1/2 at the percolation
point 〈c〉 = 1. In Figure 7 we superimpose the relative
error of this approximation with respect to the exact RS
result, with the relative error of our data with respect to
the conjecture. It shows that the error of the conjecture
is still almost by an order of magnitude smaller than the
global bound for the RS test case, thus putting a signif-
icant bound on any corrections similar in type to equa-
tion (16) in reference [43].

The differences between even and odd connectivities
are even more pronounced in case of the entropies, as we
have explained in Section 5.2. Thus, although our data
for the entropy is not nearly as accurate as for the ener-
gies, it is still instructive to study it in more detail. In
Figure 8, we plot the extrapolated values of the entropies
from Table 3 to explore its decrease for large k+1. Despite
the large error bars, a significant qualitative difference be-
tween even and odd data points is visible: The entropy for
even values of k+1 decays slowly, apparently linearly with
1/(k + 1). On the other hand, the entropies for odd k + 1
drop much more rapidly, and are already indistinguish-
able from zero (within our errors) for k+1 = 9, while it is
clearly non-vanishing for k+1 = 3 (unless our assumption

0 0.1 0.2 0.3
1/(k+1)

0

0.01

0.02

0.03

0.04

s k+
1

BL (even)
BL (odd)

Fig. 8. Asymptotic plot of the extrapolated entropies from
Table 3 as a function of 1/(k + 1). The data for even k + 1
seems to vanish linearly with 1/(k+1) (dashed line). The data
for odd k+1 drops more precipitously, and can not reasonably
be fitted at this level of accuracy.

about the scaling corrections in equation (8) are incredibly
wrong (see Fig. 3)). Unfortunately, with only a small, dis-
crete number of data points available that are significantly
above zero, it is very hard to decide whether the entropy
for odd k + 1 merely decays too rapidly, or whether there
exists a finite value of k +1 above which all odd entropies
become identically zero.

6 Conclusion

In this paper we have presented an extensive numerical
study of the ground states of spin glasses on Bethe lattices.
The available data possess sufficient accuracy to obtain ex-
trapolated values for ground state energies and entropies
at the 0.1% and the 10% level, respectively. In both cases,
significant differences emerge between the data for odd
and even values of k + 1. Based on the numerical results,
we have shown that the extrapolated energies for all even
values of 2 ≤ k + 1 ≤ ∞ are well fitted with a simple
function, equation (10). Furthermore, the data suggests
that the entropies per spin are generally non-zero at small
k + 1, but may vanish above a finite k + 1 for odd values.

Of course, there is plenty of reason to doubt that such
a simple result as equation (10), albeit confined to discrete
integer values of k + 1, could indeed be the solution to a
complex RSB problem. In fact, one argument against the
conjecture is a discrepancy in its prediction for large k+1
at next-to-leading order. Several authors [8,12] have stud-
ied spin glasses on random graphs beyond the RS level
perturbatively for k + 1 = z → ∞ to determine the 1/z
correction f1 to the free energy (at T > 0) in ESK + f1/z.
Interpreting the results recently presented in reference [8],
the correction for fixed connectivities for T → 0 would
be about f1 = −0.317, while equation (10) would predict
about 0.1124. It should be noted, though, that the 1/z ex-
pansion implicitly assumes a smooth continuation off the
integers which may lead to ambiguities in light of the os-
cillatory behavior between even and odd integers we found
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for the ground states in Figure 5 (similar to the continu-
ation of, say, the function cos(2πz)/z for z → ∞).

In any case, future calculations like the one in refer-
ence [1] but for even k + 1 will provide a check on both,
our extrapolated data and the conjecture.

This work has been supported under a grant from the Emory
University Research Committee. I am greatly indebted to Marc
Mézard for his helpful comments.

Appendix

The case k + 1 = 2

Clearly, a Bethe lattice in which each vertex has exactly
2 connections can only consists of a collection of discon-
nected loop graphs. We merely need to determine the
number of loops and their size distribution to derive the
average ground state energy and entropy. Each loop has a
50% chance of being frustrated, thus, the number of cut
bonds is equal to one-half of the number of loops, and
the degeneracy is equal to the length of these loops to the
power of their number.

To analyze the k+1 = 2 case we consider each of the n
vertices as a node with two terminals. Adding lines can
create two types of objects: strings and loops. We consider,
after adding t lines, an individual vertex as a string of
length 0, of which there are l0,t; in general, we have li,t
strings of length i, each possessing two open terminals.
In particular, before we added any lines: li,t=0 = nδi,0. A
loop of length i is created by addition of a line to both
open terminals of a string of length i − 1. There are pi,t

loops of length i after adding t lines which can not evolve
further, since they don’t possess any more open terminals.
We start with 2n open terminals and cover 2 of those with
each newly added line. We can identify two constraints:

∞∑
i=0

li,t = n − t,

∞∑
i=1

i (li,t + pi,t) = t. (11)

After adding t lines at random, there are 2(n − t)
terminals left to accommodate the next line, allowing
for

(
2(n−t)

2

)
different choices. Accounting for all possible

choices, we obtain

l0,t+1 =

[
1 − 2

n − t
+

1(
2(n−t)

2

)
]

l0,t,

li,t+1 =

[
1 − 2

n − t
+

1(
2(n−t)

2

)
]

li,t

+
2(

2(n−t)
2

)

i−1∑

j=0

lj,tli−1−j,t − l i−1
2 ,t

∣∣
i odd


 ,

pi,t+1 = pi,t +
1(

2(n−t)
2

) li−1,t, (12)

where i > 0. It is easy to show that these equations satisfy
the constraints in equations (11).

We can transform these equations by defining θ =
t/n, dθ = 1/n, y(x, θ) = 1

n

∑∞
i=0 li,tx

i, and p(x, θ) =∑∞
i=0 pi,tx

i. Considering n large and θ continuous, equa-
tions (12) turn into

dy(x, θ)
dθ

= −2y(x, θ)
1 − θ

+
x[y(x, θ)]2

(1 − θ)[1 − θ − 1/(2n)]

+
1
n

[
y(x, θ) − xy(x2, θ)

2(1 − θ)[1 − θ − 1/(2n)]

]
,

dp(x, θ)
dθ

=
xy(x, θ)
(1 − θ)2

,

y(x, 0) = 1, p(x, 0) = 0. (13)

Luckily, for n → ∞, the equations are easily solved to give

y(x, θ) =
(1 − θ)2

1 − xθ
, p(x, θ) = −1

2
ln(1 − xθ). (14)

Finally, the total number of loops for the (almost) com-
pleted graph, θ = 1 − 1/n, is given by

p(1, 1 − 1/n) =
∞∑

i=1

pi,n−1 ∼ 1
2

ln(n). (15)

On average, half of these loops will be frustrated, i.e., they
will have one of their bonds violated. Since the Hamilto-
nian in equation (1) counts the difference between violated
and satisfied bonds, or twice the violated bonds minus the
number of all bonds, n(k + 1)/2 = n, we get

e =
1
n
〈H〉 ∼ −1 +

ln(n)
2n

· (16)

Similarly, we can estimate the degeneracy Ω of these
ground states, roughly, as the average length of loops,
〈i〉 = ∂x ln p(x, 1−1/n)|x=1 ∼ n/ ln(n), taken to the power
of one-half of their number, ln(n)/(4n), to give

s =
1
n

ln Ω ∼ ln(n)2

4n
· (17)

(The logarithmic corrections in this result may not be ex-
act.) Clearly, both the number of violated bonds as well
as the entropy per spin vanish in the large-n limit.

References
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